REGIONALLY ANALYTIC METHOD IN PROBLEMS OF OPTIMUM
CONTROL OF NONSTATIONARY THERMAL MODES

A. P. Slesarenko UDC 536.12:539.377

Regionally-analytic solutions and control functions are obtained for problems of
most rapid heating of bodies under given constraints.

A survey of the literature shows that there are still problems whose solution would
permit significant progress along the path of raising the efficiency of applied optinal
fast-response control of the temperature modes of solids [1-3]. This also refers to appro-
priate one-dimensional nonstationary problems for simple bodies [3].

One of these problems is the development of such analytic approaches as would allow
regionally~analytic solutions in time to be obtained for appropriate problems and coatrol
functions in the form of compact formulas based on elementary functions.

This paper is indeed devoted to an investigation of these questions where a regionally-
analytic method is proposed for solving optimal fast-response control problems of th:2 heat-
ing and cooling of socolids under given constraints on the control, the temperature in sepa-
rate parts of the body, the heating rate, and the temperature field gradients.

Regionally-analytic structures with respect to time that satisfy a given boundacy con-
dition of the third kind for any time are constructed in this paper. The control function
enters one of the components of the solution structure explicitly. The permits a differen-
tial equation for the control function to be obtained for each of the time regions under
appropriate conditions and also simple transcendental equations to determine the con:rol
switching time, to determine the disconnection times and the regionally-analytic conurol
functions with respect to the time.

1. Construction of regional body heating control with respect to time under con-
straints on the control and distribution functions. Let us consider the control problem
for heating a plate in the following formulation

0T (x, Fo) _ 0°T (x, Fo)

aFo oxr )

ii iT_((i;’;_"l L Bi(Fo)T (x, Fo)) = Bi(Fo) (o), (2)
T (x, 0} = (x), (3)

T (%1, Fo,) == Bt,, (4)

T (= I, Fo) < f(Fo)t,, (3)

T (&1, Fo,)—T (0, Fo,) < vhy, (6)

where y(x), f£(Fo), Bi(Fo) are given functions, B, vy are given coefficients in the corditions
(3)-(6), and t, is the upper limit of the allowable control.

In this case a control function

f (Fo) t, < 1., (Fo) < ty,

must be found as as to heat it in the minimally short time Fo, under constraints on the max-
imal body temperature (4) by using the mechanism of convective heat transfer from the ini-
tial (3) to the final state T(x, Fo,) with conditions (4) and (6) taken into account. The
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constraint (5) is here imposed on the temperature mode during heating.

This problem is solved in [3] for f(Fo) = 0.5 + 0.2Fo; y(x) = 0; Bi = 1.5; g = 0.8;
2 =1; vy = 0.05 by using the analytic method, traditional in mathematical physics of solv-
ing the heat conduction equation. Because of the awkwardness of the analytic solutions ob-
tained, determination of the control switching times and the disconnection times as well as
construction of the multistage control are realized by using an electronic computer.

For the values of f(Fo), y(x), Bi, B8, y given above the analytic solution of the prob-
lem (1)-(3) in a first approximation that satisfies condition (2) exactly for any time for
the maximal value of the temperature tp(Fo) = 1 is constructed in the form

T, (x, Fo)= 14 C§"’ (Fo)[1 4 0,75 (1 — x2)]. (7)
Substituting the function (7) into (1) and using the method of orthogonal projections

(1)
[4]. we obtain for the function C{"(Fo): lﬂ%%Téggl 4+ C{" (Fo) = 0; Ct" (Fo) = d, exp (— Fo).
We find d; = —2/3 from the condition

1
(Tl(x, 0)dx = 0.
0

The condition

T‘l(i 1’ Fol) = 015 + 01? Fol- (8)

is used to determine the control switching time ¥Fo,. Solving this equation, we obtain Fo; =
0.51, where Fo, = 0.466 according to the data in [3].

We construct the function T,(x, Fo) for the second time region that satisfies condition
(2) exactly for the unknown function t,,(Fo) in the form

Ty (x, Fo) = tyaWFo) + C§ (Fo) [1 + 0.75 (1 — x2)]. (9)
Taking into account the condition T,(%l, Fo) = 0.5 + 0.2Fo, we determine the function
tym(Fo) in the form t,p(Fo) = 0.5 + 0.2Fo — Coz)(Fo).
The appropriate differential equation for the function ng)(Fo) is derived analogousliy.
Substituting the exact solution of this equation into (9), we obtain
Ty (%, Fo)= 0.5+ 02Fo -+ 0.75(1 — x) [d, exp (— 3 Fo) — 0.133]. (10)

The coefficient d, is determined from the condition
1

g [This (%, Fop)— Ty (x, Fop)ldx =0 (11)

b
for k = 1, we hence obtain d, = —1.2497. Then the function t,(Fo) is converted to the form
tyav(Fo) == 0.633 - 0.2 Fo -+ 1.2497 exp (— 3 Fo). {12)

The control switching time Fo, is determined from the condition
To (1, Fop) = 0,8 = 0,5 4 0,2 Fo,.
In this case as in {3], Fo, = 1.5.

We construct the function .T;(x, Fo) for the third time region in the form (9)

T4 (x, Fo) = tgay(Fo) 4+ C§ (Fo)[1 + 0.75 (1 — x?)}. (13)
The constraint (4) yields for the function tsy(Fo)
t3ay(F0) = 0.8 — C¥ (Fo). (14)

Applying the method of orthogonal projections to (1) for the function (13), solving

the appropriate differential equations for the function Cg3)(Fo) exactly and substituting
the result into (13), we obtain

T's3(x, Fo) = 0,8 4 0,75d; exp (— 3 Fo) (1 — x2). (15)

We find the undetermined 'coefficient d, from the condition (11) for k = 2. Substitut-
ing the result into (14) and (15) we obtain
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Fig. 1. Three-stage control t* = t, (Fo)t;! (curve 1) for
plate heating and the plate temperature T(l; Fo)t;*,
T(0; Fo)t;! (curves 2 and 3).

Fig. 2. Three-stage control t* = t (Fo)t;! (curve 1) for
plate heating and plate temperature T(0, 5; Foltj;:,
T(0; Fo)t;! (curves 2 and 3).

tsaelF0) = 0.8 4 13.2489 exp (— 3 Fo), (16)
T (x, Fo) = 0.8 — 9,9367 exp (— 3 Fo) (I — x?). (17)
Taking condition (6) into account we arrive at the equation
5
—3Fo, =In | ———— 18
¥ ( 993.67 ) (18)
to determine the control disconnection time, where Fo, = 1.764 from the solution of (8), and

Fo, = 1.794 according to the data in [3].

Curve 1 in Fig. 1 characterizes the three-stage control of plate heating. The plate
temperature T(1, Fo)ty* and T(0, Fl)t;! is shown by curves 2 and 3. The results obtained
from (7), (10), (12), (16), and (17) are represented by points in Fig. 1.

2. Construction of the body heating control, regional in time, under constraints on
the control and the temperature field gradient. In this case, for given Bi = Bi(Fo), #(x),
the condition

oT

=Fn¢
ox ° (19)

x=x!

and the condition on the upper bound of the allowable control t,(Fo) = u,(Fo)
, (Fo) = [5 Fo, Fo€0; 0.2,
1, Fo€(0,2; Fo,)
with a constraint on the temperature drop are appended to equations (1)-(4).

The problem is solved in [3] for £t = 0.5; Bi = 1; 8 = 0.8; n = 0.4; ¥(x) = 0 by the
same method as in the preceding problem.

(20)

For the first time region the function T,(x, Fo) satisfying condition {(2) exactly with
the condition (20) t;,(Fo) = 0.5Fo taken into account is constructed in the form

T, (x, Fo)=5Fo- C{’ (Fo)[1,25— x2]. (21)

Substituting T;(x, Fo) into (1) and applying the method of orthogonal projections, we cb-
tain for the function Cc1 (Fo)
dCt" (Fo)
dFo

The determination of Cgl)(Fo) from (22) is performed with condition (3) taken intc ac-
count. Then

6 3
+ - (Fo) + 2=, (22)
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Ty(x, Fo)=5Fo+ 5 (exp(—-—g-Fo) — 1](1,25—x2). (

I~
(O8]
p—

i
The control switching time Fo; is determined from the solution of the equation

1 —exp (—_‘73- Fol) — 0,08.

by using condition (19). In this case Fo,; = 0.097 whereas Fo; = 0.1 according to the data
of [3].

For the second time region the function t,p(Fo) is desired, consequently taking (21)
into account

Ty (%, FO) = tyqy(Fo) + C? (Fo) (1.25 — #2). (24)
According to condition (19)
oT, @
I = '—‘C ) F = U.4,
0% lreso s o (Fo)=104

Then, substituting the function (24) into (1) and applying the method of orthogonal
projections, we obtain for the function t,(Fo)

dtyav(Fo)
dFo
From condition (i1) for k = 1; 0 < x € 0.5 B, = 0.4087.

= 0,8; fyav(F0) = 0.8 Fo - B,. (25)

The control switching time Fo, is determined with condition (20) taken into account
toau(F0,) = 0.8 Fo, + 0,4087 = 1. (26)
According to the data of [3] Fo, = 0.72 while Fo, = 0.737 from (26).

Taking account of condition (20) we construct the function T;(x, Fo) for the third
time region for t,u(Fo) = 1 in the form

Ty (x, Fo) = 1+ C{ (Fo) (1,25~ x2). (27)
As in the previous cases, applying the method of ortho%onal projections to (1) and (27)
analogously, and substituting the result for the function C 3)(Fo) into (27) we find
T, (x, Fo) = 1 4 Byexp (——172 Fo\)(l.25—x2). (28)
For k = 2, 0 £ x £ 0.5, from condition (1)
12
= —0,4exp |[— Fo] .
Bs P ( 7 )
Applying condition (4) for ¢ = 0.5, we obtain the equation
exp (—l;g— Fo, — Fo*) =05 (29)
to determine the control switching time. Solving (29), we find Fo, = 1.14 while Fo, = 1.11

from the data in [3].

Curve 1 in Fig. 2 characterizes the three-stage control of plate heating. The plate
temperature T(0.5; Fo)tj! and T(0; Fo)ty' is shown by curves 2 and 3. Data obtained from
(23)-(25), (28) are represented by points.

3. Construction of a body heating control, regional in time, under constraints on the
control and the heating rate. In this case, (1)-(3) are included in the problem under con-
sideration under constraints on the control

0 1, (Fo) s (Fo)
and the heating rate

aT (i, Fo)

3Fo < Wy (30)
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with the final heating goal

max T (x, Fo,) =
xe[0,1] (x, ) ﬁio, (31)
max T (x, Fo,)—minT (x, Fo,)< yly; x€[0, 1]. (32)

This problem is solved in [3] for £ = 1; Bi = 0.5; B8 = 0.8; u = 0.175; v = 0.02; ¢(x)
=O’

— .5 Fo,
uz(Fo)tOI:{O Fo, 0C{Fo2, (33)

I, Fox>2

by the same method as was presented above.

We construct the function T,(x, Fo) for the first time regicn in a first approximation
that satisfies condition (2) exactly for t;,(Fo) = 0.5Fo (condition (33)) in the form

T, (x, Fo) = 0,5Fo+ Cf"’ (Fo) (1,25 — 0,25x?). (34)

We find the function Cgl)(Fo) from the solution of the appropriate differential equa-
tion obtained by applying the method of orthogonal projections to (1) for the functicn (34).
Then (34) is converted as follows

T, (x, Fo) = 0,5 Fo - 0.25 [ﬁlexp(-%ﬂ)) _ 1}(5_42). (35)

It is easy to verify that the initial condition (3) is satisfied exactly for 8, = 1.

Applying the condition (30), we find for the control switching time Ro,

0,325 = % exp (—-’; F01> ; Fo, = 0.645.

where Fo, = 0.65 according to the data in [3].

For the second time region the solution of the problem in a first approximation for
unknown functions t,n,(Fo) and ng)(Fo) satisfying condition (2) exactly, is constructed in
the form

T, (x, Fo) = thav(Fo) + 0,25C" (Fo) (5 — x2). (36)
Using condition (30), we obtain the equation
dtyae(FO) dc (Fo) 37
= — 0,175 — — (37)

We find the function ng)(Fo) from the solution of the corresponding differential equa-
tion obtained by application of the method of orthogonal projections to (1) for the func-
tion (36). Formulas (36) and (37) are here converted as follows

T, (x, Fo) = tyay(Fo) + 0.25 B, exp (— 3 Fo) — 0,351 (5 — x?), (38)
vl 175 1 38, exp(— 3 Fo). (39)
dFo
Applying the condition t;p(Fo;) = t,;(Fo;) we write for the function t,p,(Fo)
thas(F0) = 0,175 Fo + B, [0.144 — exp (— 3 Fo)] 4 0.21. (40)

For k = 1 from condition (11) there follows that f, = 0.75. The control switching time
Fo, is determined from the solution of the equation t,,(Fo,) = 1 by using condition (33),
hence, we obtain Fo, = 3.91, whereas Fo, = 3.86 according to the data of [3].

For the third time region t,u(Fo) = 1 from condition (33), then taking account o (34)
Ty (x, Fo) = 1 + 0.25CE” (Fo) (5 — x3). (41)

The function CgB)(Fo) is found analogously to the function Cg2>(Fo). In this case the
undetermined coefficient B; is determined from condition (11) for k = 2, then (41) is con-
verted to the form

Ty (x, Fo) = 1— 0.4655 exp (~ _f:_’ Fo) 5 — ). (42)
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Fig. 3. Four-stage plate heating con-
trol t* = t,(Fo)ty! (curve 1) and plate
temperature T(1l; Fo)t;* and T(0; Fo)t;*
(curves 2 and 3).

Taking account of condition (31, we obtain T,(l; Foy) = 0.8; Fo, = 5.206 from condition
(31), while Fo, = 5.2 from the data in [3].

For the fourth time region we represent the approximate solution of the problem for
the unknown function t,,(Fo) in the form

Tw(x, Fo) = #,5(Fo) + 0,25C§" (Fo) (5 — x2).

Condition (31) permits the dependence

to be obtained, then

tion (43), we

tiav(Fo) = 0.8 — C§? (Fo),

dtav(Fo) _ dCf" (Fo)

dFo dFo

(43)

(44)

Applying condition (44) and the method of orthogonal projections to (1) for the func-

obtain for the functions CO4 s tums Ty

dC§t (Fo)
dFo

t,av(Fo) = 0.8 — B, exp (— 3 Fo),
T.(x, Fo) = #,aW(Fo) + 0.25f, exp (— 3 Fo) (6 — x2).

+ 3Ct" (Fo) = 0,

From the condition of equality of the temperature at the time Fo; we obtain

B, = — 0.2 exp (3 Fo,).

We apply condition (32) to determine the control disconnection time Fo,, then

3(Fos—Fo,)=In0.4; Fo,=5.51.

while Fo, = 5.6 according to the data in [3].

Curve 1 in Fig. 3 characterizes four-stage plate heating control.

ture T(1l; Fo)/t, and T(0; Fo)/t, is shown by curves 2 and 3. The results obtained from
(35), (38), (40), (42), (45), (46) are represented by points.

The proposed method can also efficiently construct optimal multistage fast-response
control of the nonstationary thermal mode of continuous and hollow cylinders and spheres
under the constraints considered above.
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