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Regionally-analytic solutions and control functions are obtained for problems of 
most rapid heating of bodies under given constraints. 

A survey of the literature shows that there are still problems whose solution would 
permit significant progress along the path of raising the efficiency of applied optinal 
fast-response control of the temperature modes of solids [I-3]. This also refers to appro- 
priate one-dimensional nonstationary problems for simple bodies [3]. 

One of these problems is the development of such analytic approaches as would allow 
regionally-analytic solutions in time to be obtained for appropriate problems and control 
functions in the form of compact formulas based on elementary functions. 

This paper is indeed devoted to an investigation of these questions where a regionally- 
analytic method is proposed for solving optimal fast-response control problems of th~ heat- 
ing and cooling of solids under given constraints on the control, the temperature in sepa- 
rate parts of the body, the heating rate, and the temperature field gradients. 

Regionally-analytic structures with respect to time that satisfy a given bounda:y con- 
dition of the third kind for any time are constructed in this paper. The control fu~mtion 
enters one of the components of the solution structure explicitly. The permits a differen- 
tial equation for the control function to be obtained for each of the time regions under 
appropriate conditions and also simple transcendental equations to determine the con~:rol 
switching time, to determine the disconnection times and the regionally-analytic con~:rol 
functions with respect to the time. 

i. Construction of regional body heating control with respect to time under con- 
straints on the control and distribution functions. Let us consider the control problem 
for heating a plate in the following formulation 

OF (x, Fo) 02T (x, Fo) 
-- , ( 1 )  

0 Fo Ox 2 

/ 
+ Bi(Fo)T (x, Yo)) = Bi(Fo) tav(Fo ), (2)  i +--- OT (x, Fo) 

OX ~ x=~l 

T (x, O) = ~ (x), ( 3 ) 

T ( 4 - l ,  Fo,) = ~/0, (4) 

r ( _  l, Fo) ~ [(Fo) t o, (5) 

T(+_l ,  F o , ) - - T ( 0 ,  F o , ) ~ ? t  0, (6) 

where ~ ( x ) ,  f ( F o ) ,  B i (Fo )  a r e  g iven  f u n c t i o n s ,  ~, ~ a r e  g i v e n  c o e f f i c i e n t s  in  t h e  c o r d i t i o n s  
( 3 ) - ( 6 ) ,  and t a i s  t h e  upper  l i m i t  o f  t h e  a l l o w a b l e  c o n t r o l .  

In this case a control function 

f (Fo) t o < ~v(Fo) ~.~ to, 

must be found as as to heat it in the minimally short time Fo, under constraints on the max- 
imal body temperature (4) by using the mechanism of convective heat transfer from the ini- 
tial (3) to the final state T(x, Fo,) with conditions (4) and (6) taken into account. The 
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constraint (5) is here imposed on the temperature mode during heating. 

This problem is solved in [3] for f(Fo) = 0.5 + 0.2Fo; ~(x) = 0; Bi = 1.5; ~ = 0.8; 
s = I; 7 = 0.05 by using the analytic method, traditional in mathematical physics of solv- 
ing the heat conduction equation. Because of the awkwardness of the analytic solutions ob- 
tained, determination of the control switching times and the disconnection times as well as 
construction of the multistage control are realized by using an electronic computer. 

For the values of f(Fo), ~(x), Bi, ~, ~ given above the analytic solution of the prob- 
lem (1)-(3) in a first approximation that satisfies condition (2) exactly for any time for 
the maximal value of the temperature tm(Fo) = 1 is constructed in the form 

T~ (x, Fo) = 1 + C~' ~ (Fo) [1 -1- 0,75 (1 - -  x2)l. (7)  

Substituting the function (7) into (I) and using the method of orthogonal projections 

[4]. we obtain for the function C~ 1)(Fo): dC~l) (Fo) 5 C~ I) (Fo) = 0; C~ I) (Fo) = d lexp(- Fo). 
dFo 

We find d I = -2/3 from the condition 

l 

.[_ T l(x, O) dx = 0 .  
o 

The condition 

T l ( !  I, Fo0 = 0,5 § 0,2 Fo~. (8)  

is used to determine the control switching time ~o I. Solving this equation, we obtain Fo I = 
0.51, where Fo I = 0.466 according to the data in [3]. 

We construct the function T2(x , Fo) for the second time region that satisfies condition 
(2) exactly for the unknown function t=m(Fo) in the form 

T 2 (x, Fo) = te~a~Fo) -[- C~ z) (Fo) [1 -}- 0.75 (1 - -  xZ)]. ( 9 ) 

Taking into account the condition T2(• Fo) = 0.5 + 0.2Fo, we determine the function 

t2m(Fo) in the form t2m(Fo) = 0.5 + 0.2Fo - C!2)(Fo). 

The appropriate differential equation for the function C~2)(Fo) is derived analogously. 

Substituting the exact solution of this equation into (9), we obtain 

T2 (x, Fo) = 0.5 ,2- 0,2 Fo -t- 0.75 (1 .-- x ~) [d2 exp (--  3 Fo) - -  0.133]. ( 10 ) 

The coefficient d 2 is determined from the condition 

I 

.[ [Th+l (x, Fob) - -  Tk (x, Fok)l dx = 0 ( 11 ) 
0 

f o r  k = 1, we h e n c e  o b t a i n  d 2 = - 1 . 2 4 9 7 .  Then t h e  f u n c t i o n  t2m(Fo)  i s  c o n v e r t e d  t o  t h e  fo rm 

t2,a~Fo ) : 0.633 -]- 0,2 Fo + 1.2497 exp ( - -  3 Fo). ( 12 ) 

The control switching time Fo z is determined from the condition 

T2(1, Fo2) = 0,8 = 0 , 5 + 0 , 2 F o ~ .  

In this case as in [3], Fo 2 = 1.5. 

We construct the function T3(x, Fo) for the third time region in the form (9) 

T~ (x, Fo) = / ~ v ( F o )  + C~ ~) (Fo) [ 1 + 0.75 (I - -  xZ)]. ( 13 ) 

The constraint (4) yields for the function t3m(Fo) 

t3av(Fo ) = 0.8 - -  C~ 3) (Fo). (14)  

Applying the method of orthogonal projections to (i) for the function (13), solving 

the appropriate differential equations for the function C~3)(Fo) ~ exactly and substituting 
the result into (13), we obtain 

T3 (X, Fo) = 0.8 4- 0,75d3 exp ( - -  3 Fo) ( 1 - -  xZ). ( 15 ) 

We find the undetermined'coefficient da from the condition (ii) for k = 2. Substitut- 
ing the result into (14) and (15) we obtain 
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Fig. i. Three-stage control t* = tm(Fo)to I (curve I) for 
plate heating and the plate temperature T(I; Fo)t[ l, 
T(0; Fo)t01 (curves 2 and 3). 

Fig. 2. Three-stage control t* = tav(Fo)t[ z (curve i) for 
plate heating and plate temperature T(0, 5; Fo)t[ I, 
T(0; Fo)to z (curves 2 and 3). 

t3a~F@ = 0.8 4-- 13.2489 exp (--  3 Fo), (16)  

T3 (x, Fo) = 0.8 - -  9,9367 exp (--  3 Fo) ( 1 - -  x2). ( 17 ) 

Taking condition (6) into account we arrive at the equation 

- - 3 F ~  5 ) 9 9 3 , 6 7  (18)  

to determine the control disconnection time, where Fo, = 1.764 from the solution of (8), and 
Fo, = 1.794 according to the data in [3]. 

Curve 1 in Fig. 1 characterizes the three-stage control of plate heating. The plate 
temperature T(I, Fo)t[ ! and T(0, Fl)t[ ! is shown by curves 2 and 3. The results obtained 
from (7), (i0), (12), (16), and (17) are represented by points in Fig. i. 

2. Construction of the body heating control, regional in time, under constraints on 
the control and the temperature field gradient. In this case, for given Bi = Bi(Fo), ~(x), 
the condition 

OT I = T ~ / t o  (19 
OX ]x=• 

and the condition on the upper bound of the allowable control tm(Fo) = u2(Fo) 

u~(Fo) ' / 5F~ FoE[O; 0.21, (20 
[ 1, Fo E (0,2; Fo, )  

with a constraint on the temperature drop are appended to equations (1)-(4). 

The problem is solved in [3] for t = 0.5; Bi = I; ~ = 0.8; ~ = 0.4; 9(x) = 0 by the 
same method as in the preceding problem. 

For the first time region the function Tz(x , Fo) satisfying condition (2) exactly with 
the condition (20) tzm(FO) = 0.SFo taken into account is constructed in the form 

T 1 (x, Fo) = 5 Fo -~ C~ 1) (F~  [ 1,25 - -  x,]. (21  

Substituting T1(x, Fo) into (i) and applying the method of orthogonal projections, we ob- 
tain for the function C~I)(Fo) 

dC~ 1) (Fo) 6 C(1) (Fo~ 
dFo + T  o ~ , + - - = _ _  0. (22)  

The determination of C!I)(Fo) from (22) is performed with condition (3) taken intc ac- 
count. Then 
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Tl(x, F o )  5 F o + 5 [ e x p ' [  (_ -76Fo) 1] -- \ - -  - -  (1,25 xZ). 

The control switching time Fo I is determined from the solution of the equation 

1--exp (--~ Fo 0 =0,08. 

by using condition (19). In this case Fol = 0.097 whereas Fo i 
of [3]. 

(23)  

= 0.I according to the data 

For the second time region the function t2m(Fo) 
into account 

T~ (x, Fo) = t~av(Fo ) + C~ 2) (Fo) (1.25 - -  x2). 

According to condition (19) 

is desired, consequently taking (21) 

(24)  

OT2 I 
[ : - -  C(02) (Fo) = 0.4. 

OX x~+o, 5 

Then, substituting the function (24) into (i) and applying the method of orthogonal 
projections, we obtain for the function t2m(Fo) 

dt~av(Fo) = 0,8; t2av(Fo ) = 0.8 Fo + 82. (25)  
d Fo 

From c o n d i t i o n  (11) f o r  k = 1; 0 <- x < 0 .5  ~2 = 0 .4087.  

The c o n t r o l  s w i t c h i n g  t ime  Fo 2 i s  d e t e r m i n e d  w i t h  c o n d i t i o n  (20)  t a k e n  i n t o  a c c o u n t  

/2av(Fo~) = 0,8 Fo 2 Jr 0,4087 = 1. (26)  

Acco rd ing  to  t h e  d a t a  o f  [3] Fo 2 = 0 .72  w h i l e  Fo~ = 0.737 from (26) .  

Taking account of condition (20) we construct the function Ta(x, Fo) for the third 
time region for t~m(FO) = i in the form 

T3(x, Fo) = 1 q- C(031 (Fo)(1,25--x2). (27)  

As in  t h e  p r e v i o u s  c a s e s ,  a p p l y i n g  t h e  method o f  o r t h o g o n a l  p r o j e c t i o n s  to  (1)  and (27)  
a n a l o g o u s l y ,  and s u b s t i t u t i n g  t h e  r e s u l t  f o r  t h e  f u n c t i o n  C-(oa)(Fo) i n t o  (27)  we f i n d  

( 12 Fo) (1.25__ xZ)" (28)  T~(x, F o ) =  l + 8 3 e x p  - -  7 

For  k = 2, 0 <_ x <- 0 .5 ,  f rom c o n d i t i o n  (1)  

8 ~ = - - 0 , 4 e x p  ( ~ F o )  �9 

Applying condition (4) for s = 0.5, we obtain the equation 

exp (-12-Fo~ - F o , ) = 0 , 5  (29)  

to determine the control switching time. Solving (29), we find Fo, = 1.14 while Fo, = i. Ii 
from the data in [3]. 

Curve i in Fig. 2 characterizes the three-stage control of plate heating. The plate 
temperature T(0.5; Fo)to z and T(0; Fo)t01 is shown by curves 2 and 3. Data obtained from 
(23)-(25), (28) are represented by points. 

3. Construction of a body heating control, regional in time, under constraints on the 
control and the heating rate. In this case, (i)-(3) are included in the problem under con- 
sideration under constraints on the control 

(30) 

0 G tav(VO) G u~ (Fo) 
and the heating rate 

OT(t, Fo) <~to 
0 Fo 
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with the final heating goal 

max T(x, Fo,) = ~tQ, (31)  
xc[0,1 ] 

maxT(x, Fo.)--minT(x, F o , ) ~ ? / o ;  x6[0,  1]. (32)  

Th i s  p rob lem i s  s o l v e d  in  [3] f o r  s = 1; Bi = 0 . 5 ;  ~ = 0 . 8 ;  p = 0 . 1 7 5 ;  ~ = 0~ ~,(x) 
= 0 ,  

~ (Fo)  t71 -: / 0"SF~ 0 ~ F o ~ 2 ,  
[ 1, F o ~ 2  (33 

by t h e  same method as  was p r e s e n t e d  above .  

We construct the function Tz(x , Fo) for the first time region in a first approximation 
that satisfies condition (2) exactly for tm(Fo) = 0.SFo (condition (33)) in the form 

T1 (x, Fo) = 0,5 Fo @ C~ 1) (Fo) (1,25 - -  0,25x2). (34)  

We find the function C~I)(Fo) from the solution of the appropriate differential equa- 
tion obtained by applying the method of orthogonal projections to (i) for the function (34). 
Then (34) is converted as follows 

[ < ) ] TI(x, F o ) = 0 , S F o + 0 . 2 5  Diexp 3 Fo - -  1 (5--x2).  (35)  
7 

I t  i s  e a s y  t o  v e r i f y  t h a t  t h e  i n i t i a l  c o n d i t i o n  (3)  i s  s a t i s f i e d  e x a c t l y  f o r  ~z = 1. 

App ly ing  t h e  c o n d i t i o n  ( 3 0 ) ,  we f i n d  f o r  t h e  c o n t r o l  s w i t c h i n g  t im e  Roz 

where  Foz = 0 .65  a c c o r d i n g  t o  t h e  d a t a  in  [ 3 ] .  

For  t h e  s e cond  t i m e  r e g i o n  t h e  s o l u t i o n  o f  t h e  p rob lem in a f i r s t  a p p r o x i m a t i o n  f o r  
unknown f u n c t i o n s  t2m(Fo)  and C~2)(Fo)  s a t i s f y i n g  c o n d i t i o n  (2)  e x a c t l y ,  i s  c o n s t r u c t e d  in  
t h e  form 

T~ (x, Fo) = t2av(Fo) q- 0,25C~ ~) (Fo)(5 --x2). (36)  

Using condition (30), we obtain the equation 

dt~aIF~ = - -0 ,175 dC~ 2) (Fo) (37) 
d Fo dFo 

We f i n d  t h e  f u n c t i o n  C~2)(Fo)  f rom t h e  s o l u t i o n  o f  t h e  c o r r e s p o n d i n g  d i f f e r e n t i a l  equa -  
t i o n  o b t a i n e d  by a p p l i c a t i o n  o f  t h e  method o f  o r t h o g o n a l  p r o j e c t i o n s  t o  ( t )  f o r  t h e  f a n c -  
t i o n  ( 3 6 ) .  Formulas  (36)  and (37)  a r e  h e r e  c o n v e r t e d  as  f o l l o w s  

T2 (x, Fo) = t~,a~Fo) @ 0.25 [~ exp (--  3 Fo) - -  0,351 (5 - -  x2), (38)  

d6av(Fo) = 0,175-b 3~ exp (--  3 F| (39) 
dFo 

A pp ly ing  t h e  c o n d i t i o n  t lm(FO ~) = t 2 m ( F o l )  we w r i t e  f o r  t h e  f u n c t i o n  t zm(Fo)  

t2 a4Fo) ~ 0,175 Fo n u ~ [0,144 - -  exp ( - -  3 Fo)l q- 0,21. (40)  

For k = 1 from condition (ii) there follows that ~2 = 0.75. The control switching time 
Fo 2 is determined from the solution of the equation t2m(Fo:) = 1 by using condition (33), 
hence, we obtain Fo 2 = 3.91, whereas Fo 2 = 3.86 according to the data of [3]. 

For the third time region t3m(Fo) = 1 from condition (33), then taking account of (34) 

T~ (x, Fo) = 1 + 0.25C~ 3' (Fo) (5 - -  x~). (41) 

The f u n c t i o n  C ! 3 ) ( F o )  i s  found  a n a l o g o u s l y  t o  t h e  f u n c t i o n  C ! 2 ) ( F o ) .  In  t h i s  c a s e  t h e  
u n d e t e r m i n e d  c o e f f i c i e n t  $3 i s  d e t e r m i n e d  f rom c o n d i t i o n  (11)  f o r  k = 2, t h e n  (41)  i s  con-  
v e r t e d  to the form 

Ta(x, F o ) =  1---O,4655 exp { - - 3  Fo~ (5-- xz). (42)  
\ 7 /  
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Fig. 3. Four-stage plate heating con- 
trol t* = tm(Fo)t~ z (curve i) and plate 
temperature T(I; Fo)t7 z and T(0; Fo)t~ l 
(curves 2 and 3). 

Taking account of condition (31), we obtain T~(I; Fo~) = 0.8; Fo 3 = 5.206 from condition 
(31), while Fo 3 = 5.2 from the data in [3]. 

For the fourth time region we represent the approximate solution of the problem for 
the unknown function t4m(Fo) in the form 

T~ (x, Fo) = t~a~FO) + 0,2SC~ 4> (Fo)(5 - -  xD. 

C o n d i t i o n  (31)  p e r m i t s  t h e  d e p e n d e n c e  

to be obtained, then 

t~av(Fo) = 0.8 - -  C(o 4) (Fo), 

(43) 

dt~vCFo) _ dCg 4) (F~ (44)  
dFo dFo 

App ly ing  c o n d i t i o n  (44)  and t h e  method o f  o r t h o g o n a l  p r o j e c t i o n s  t o  (1 )  f o r  t h e  f u n c -  
t i o n  (43), we obtain for the functions C(4)0 ' t4m' T4 

dC~ 4) (Fo) 
d Fo ~- 3C~4) (Fo) = 0, 

t~av(Fo) = 0.8 --  ~t exp ( - -  3 Fo), (45)  

Tr (x, Fo) = t~a~Fo) H- 0.25~ exp (--  3 Fo) (5 - -  xZ). (46)  

From t h e  c o n d i t i o n  o f  e q u a l i t y  o f  t h e  t e m p e r a t u r e  a t  t h e  t im e  Fo 3 we o b t a i n  

~r = - -  0.2 exp (3 Fo~). 

We a p p l y  c o n d i t i o n  (32)  t o  d e t e r m i n e  t h e  c o n t r o l  d i s c o n n e c t i o n  t i m e  F o , ,  t h e n  

3(Fo3--Fo,)  = In  0.4; Fo,=5.51.  

w h i l e  Fo, = 5 .6  a c c o r d i n g  t o  t h e  d a t a  in  [ 3 ] .  

Curve 1 in  F i g .  3 c h a r a c t e r i z e s  f o u r - s t a g e  p l a t e  h e a t i n g  c o n t r o l .  The p l a t e  t e m p e r a -  
t u r e  T(1 ;  F o ) / t 0  and T(0 ;  F o ) / t 0  i s  shown by c u r v e s  2 and 3. The r e s u l t s  o b t a i n e d  f rom 
(35), (38), (40), (42), (45), (46) are represented by points. 

The proposed method can also efficiently construct optimal multistage fast-response 
control of the nonstationary ~hermal mode of continuous and hollow cylinders and spheres 
under the constraints considered above. 
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